تم تحميل هذا الملف من موقع تلاميذي www.talamidi.com

الثالث تانسوى إعسدادي

المملكة المغربية

وزارة التربية الوطنية والتعليم العالي

وتكوين الأطرو البحث العلمي

⊕ لّصالاه ⊕:

 $.B\hat{D}C:$ حساب *

ABC اويتان محيطيتان تحصران نفس القوس $B\hat{D}C$ و $A\hat{B}C$: الدينا

$$|B\hat{D}C=30^\circ|$$
 : فإن $|A\hat{B}C=30^\circ|$ ، و بما أن $|B\hat{D}C=A\hat{B}C|$ فإن

 $A\hat{B}D$: حساب /*

 $A\hat{O}$ المركزية محيطية مرتبطة بالزاوية المركزية $A\hat{B}D$: الدينا

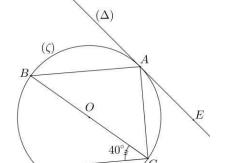
$$\hat{ABD} = \frac{1}{2}\hat{AOD}$$
 : يعني أن $\hat{AOD} = 2\hat{ABD}$: إذن

.
$$A\hat{B}D = 50^{\circ}$$
 : و بالتالي غاِن $A\hat{B}D = \frac{1}{2} \times 100^{\circ}$: و

 $B\hat{O}C:$ حساب *

 $\hat{BOC} = 2\hat{BAC}$: الذينا ، \hat{BOC} الأوية محيطية مرتبطة بالزاوية المركزية ، \hat{BAC} : الدينا

. $|B\hat{O}C = 60^{\circ}|$: و بالتالي غإل $|BOC = 2 \times 30^{\circ}|$: چ



الصريل 2:

1)-لنثبت أن المثلث ABC قائم الزاوية .

[BC] لتى قطلاها (ζ) التى قطلاها ABC لدينا من خلال الشكـل

A مثلث قائم الزاوية في ABC : إذن

. $E\hat{A}C$: حساب * – (2

AC اويتان محيطيتان تحصران نفس القوس $A\hat{B}C$ و $E\hat{A}C$: الدينا

① .
$$\hat{EAC} = \hat{ABC}$$
 : إذن

C و B على التوالى في B و B و قاطع هما B على التوالى في B

. لدينا \hat{BC} و \hat{BC} زاويتان متبادلتان داخليا

②.
$$A\hat{B}C = B\hat{C}D$$
 : إذن

.
$$|\hat{EAC}=40^{\circ}|$$
 : من \hat{C} و من \hat{C} و بما أن \hat{C} و بما أن \hat{C} و من \hat{C}

 $A\hat{O}C$: حساب *

 $\hat{AOC} = 2 \times \hat{EAC}$: اذن ، \hat{AOC} الدينا ، \hat{AOC} الزاوية المحيطية مرتبطة بالزاوية المحيطية الزاوية المحيطية الزاوية المحيطية الزاوية المحيطية المحتوطية المح

.
$$A\hat{O}C = 80^{\circ}$$
 : بالتالي $A\hat{O}C = 2 \times 40^{\circ}$: ح

تم تحميل هذا الملف من موقع تلاميذي www.talamidi.com

⊕ تصریل ③؛

 $B\hat{D}C$ هو منصف الزاوية DA) الثبت أن

. AC ويتان محيطيتان تحصران نفس القوس $A\hat{D}C$ و م $A\hat{B}C$: الدينا *

① . $|A\hat{B}C = A\hat{D}C|$: الخن

AB و المينا $A\hat{C}B$ و المينان محيطيتان تحصران نفس القوس $A\hat{C}B$: *

② . $|A\hat{C}B = A\hat{D}B|$: الخن

 * و لدينا * مثلث متساوى السامين في *

③ . $\widehat{ABC} = \widehat{ACB}$: إذن

: و من \hat{D} و من \hat{D} و بما أن الزاويتين \hat{ADC} و من \hat{D} و من من من من من و من من من و من م

 $B\hat{D}C$ هو منصف الزاوية DA)

. $\hat{AOB} + \hat{BOC} + \hat{COA} = 360^{\circ}$: النثبت أن

. لدينا $\hat{ACB}: A\hat{C}$ و محيطيت و $\hat{ACB}: A\hat{C}$ الزاوية المركزية المرتبطة بها

و لدينا $\hat{BAC}: \hat{AC}$ زاويت محيطيت و \hat{BOC} الزاويت المركزيت المرتبطت بها.

و لدينا $\hat{BA}:$ اويت محيطيت و \hat{COA} الزاويت المركزيت المرتبطت بها.

و من ① و ② و ③ نستنتج أن :

$$A\hat{O}B + B\hat{O}C + C\hat{O}A = 2A\hat{C}B + 2B\hat{A}C + 2C\hat{B}A$$
$$= 2(A\hat{C}B + B\hat{A}C + C\hat{B}A)$$
$$= 2 \times 180^{\circ}$$
$$= 630^{\circ}$$

.
$$\hat{AOB} + \hat{BOC} + \hat{COA} = 360^{\circ}$$
 : ن

: © لَصريان ®

. $B\hat{A}C$: حساب *

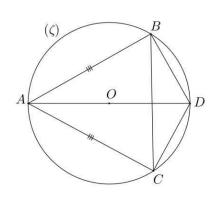
. \hat{BOC} لدينا \hat{BAC} اويت محيطيت مرتبطت بالزاويت المركزيت

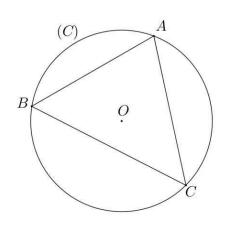
 $.B\hat{A}C = \frac{1}{2}B\hat{O}C$: ومنه غاِن $B\hat{O}C = 2B\hat{A}C$: إذن

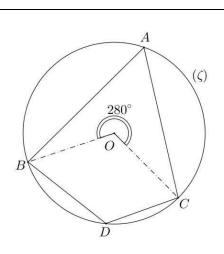
و لدينا من خلال الشكـل :

$$B\hat{O}C = 360^{\circ} - 280^{\circ}$$
$$= 80^{\circ}$$

. $\widehat{BAC} = 40^{\circ}$: و منه فإن $BAC = \frac{1}{2} \times 80^{\circ}$: و منه فإن







تم تحميل هذا الملف من موقع تلاميذي www.talamidi.com

⊕ لصريه @:

النبت أن المثلث ABC متساوي الساقين

AB و $A\hat{C}B$ و الويتان محيطيتان تحصران نفس القوس $A\hat{C}B$. لدينا

① $\hat{ACB} = \hat{BAD}$: الإذن

. لدينا \hat{ABC} و \hat{ABC} اويتان متبادلتان درخليا

 $2 \hat{ABC} = \hat{BAD}$: إذن

 $A\hat{B}C = A\hat{C}B$: و من Φ و من Φ و نستنتج أن

. A و التالي فإن المثلث aBC متساوي الساقين و

